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I. Introduction

Resonant tunneling structures (RTS) are exciting systems because of

their potential applications, but also because of the basic physics they

involve. In particular, the times related to the tunneling process have been

1
the subject of theoretical disputes. The dwell times and transmission times

can be extracted from optical or transport experiments. These times can be

found from the study of wave-packet propagation from the time-dependent

SchrOdinger equation, but they can also be related to some static

characteristics of the RTS (see, e.g., Ref. 2 and references therein). Most

commonly the lifetime of the resonance state is determined from the halfwidth

of the energy derivative of the phase shift or, equivalently, from the

transmission coefficient T(E). Here we would like to calculate another

important static quantity characterizing the RTS, namely the change in the

density of states AN(E) that it introduces. As shown for scattering

resonances in three dimensions, the position and width of the narrow peaks in

cross-sections are the same as in the density of states (see,e.g., the

discussion for the short-range potentials in Ref. 3). Therefore, in our one-

dimensional case we expect the resonances in AN(E) to coincide with those in

T(E). Of course, in the nonresonant regions the two quantities can be very

different. There are cases, however, when the transmission cannot be used to

describe resonant states. Two such examples are shown in Fig. 1 -- there is

no transmission at the resonance energy. The density of states N(E) could

still be used to characterize such systems. Another possibility would be the

analysis of the phase shifts in reflection or the study of wavefunctions in

the complex energy plane, 4 , 5 but we believe that AN(E) is the most basic

physical quantity characterizing the continuous spectrum.
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In the present paper we calculate AN(E) for an asymmetric double-barrier

structure without bias, but the method can be generalized to other cases. The

local density of states in the double-barrier structure has recently been

obtained6 ,7 and analyzed for various limits. It can be defined as

N(E,x) - 6(E-En) 1On(X)I 2 (1)

n

where En are the eigenvalues of the system and 0n are the corresponding

eigenstates. Equation (1) has been integrated in Ref. 6 over the volume of

the "well" in the RTS. Such quantity depends on the region of integration.

It is modified by the RTS due to: (i) modification of the wavefunctions (ii)

change of the position of energy levels E . In Ref. 6 the second modificationn

has been neglected, i.e., their AN(E,x) would be identically zero if

integrated over the total volume. Here we want to consider the global density

of states

N(E) - 6(E-En) , (2)

n

which is modified by the RTS only through the change of spacing of the energy

levels and does not involve any specific region in space.

II. Determination of AN(E)

In order to deal with finite densities of states, we must place our RTS

in a large box extending, say, from 0 to L. In an empty box, the condition

for the energy levels (E - 2k  Is2a i



D (k) - sin kL -0 , (3)

which yields k - i.e., equally-spaced points in k-space. The density of

states is the inverse of the spacing between the points,

N(k )  L(4)

and is proportional to the size of the box. In the presence of the RTS, the

condition for the energy levels is modified to

D(k) - 0 , (5)

where we use the same definition of k(E - Xk2 as before. The condition
2m

D(k) - 0 above is obtained by demanding that the wave function O(x) vanishes

at the right edge (x - L) of the box. We start with the solution O(x) - sinkx

near the left edge (x - 0) of the box and require the usual continuity of this

wave function and its first derivative across the first interface. This

matching condition determines the two unknown coefficients of the solutions to

the Schr6dinger equation to the right of the first interface. We repeat the

procedure until the most general solution on the right-hand side region of the

last interface is obtained. Finally, imposing the boundary condition that at

x - L the wave function must vanish gives the required condition. The

function D(k) is given in the Appendix for the case of an asymmetric double-

barrier structure, but it can be determined for any other potential profile.

Nov the spacing between the points in k-space is altered, althouth only by an

extremely small amount, because we expect AN(E) to be finite while N (E) will
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increase linearly with the box size. Thus, we expect, for instance, to find

in some energy region 10001 states in the presence of the RTS and 10000

without it. This means that the spacing Ak will be almost identical to L for
n L

large L,

Ak - + x (6)
n L n

where xn << L The change in the density of states becomes

AN(k) -N(k) N(k)- 1 _ L - L _ 2 ( 7)
n n 0n &k ir i nn

We expect AN to tend to a constant with increasing box size, so that x should
n2

be of the order of () .

Now we have to determine x n from Eq. (5). Suppose the box is large

enough and we find the first eigenstate at k - k The next root of D(k)

should occur at k - k + Z + x Due to the smallness of xl, we get2 1 L V 1

D(k+ )

D (k+-)

The next root will be at k3 - k2 + + x2 , and again

D (k2 +)x2 ' D (2+[ L9
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Here we notice that although x,x 2,.... are small, they may add up to something

large, so that the shift cf k with respect to k°  nm

The s~aing of the levels Ak will be almost identical to Ak0 - 7
n n L"

The above prescription for finding AN(k), and therefore AN(E),

AN(E) - AN(k) _M_ (10)

is very simple. The only problem with it is that it does not work. If we

look at the positions of the roots of D(k), we find very irregular spacing,

different from M even for a very large box and strongly dependent on the
L

positions of the RTS in the box. In other words, the shifts of the levels due

to the RTS depend on the phase with which the wavefunction reaches the

structure. This can be understood if we look at the problem differently.

Suppose we have a single thin barrier in the middle of the box. With respect

to the center of the box, all states are either symmetric or antisymmetric.

It is obvious that the barrier affects each type differently. Therefore, we

can expect to get two "subdensities" of states -- one corresponding to

symmetric and the other to antisymmetric states. For each of these

subdensities, the above described method for finding AN(E) can be applied, but

not to the total density of states. For other positions of the structure in

the box, the number of subdensities will be higher: if the RTS is placed at

L we get three subdensities, and if it is at 0.4 L, we get five subdensities.
3,
The number of subdensities equals the number of possible phases with which the

wavefunction can reach the RTS. The superposition of several equally-spaced

subsets of points in k-space results in something that looks messy. But



applying our method to each subdensity and then adding them all up gives us

AN(E) independent of the position of RTS in the box, as could be expected.

The procedure is thus as follows: we place the RTS at a given point in

the box, say, at L. This means that we have three subdensities -- we start

from some initial energy and find three subsequent roots of D(k). Each of

these roots defines a subset of states with the spacings equal to (L + xn

where xn is very small. We determine

D(kn+

n D'k L)

for each subdensity and then AN(kn) from Eq. (7) (with L replaced by 3L).

Adding up the three subdensities, we get the final result. The size of the

RTS is usually of the order of 100 A, while the box size must be 10 4 107 A

depending on how fine the structures are (narrow resonances) in AN(E) which we

want to consider.

III. Results and discussion

Let us start from the single-barrier case with D(k) given by Eq. (A2) in

the Appendix. We assume m - 0.067 m° throughout the structure. In Figure 2

we show the transmission T(E) and the change in density of states AN(E) for

single barriers 100 meV high and 50 A wide (Fig. la) or 100 A wide (Fig. lb).

In the first case both T(E) and AN(E) do not show any sharp structures;

transmission increases almost monotonically from zero to one as expected. In

the second case transmission oscillates before it reaches unity while AN(E)

exhibits a distinct (though broad) resonance. For low energies AN(E) is



negative as if some levels were pushed up from below the barrier and "piled

up" above its top.

Next we look at a double-barrier structrue with D(k) given by Eq. (Al)

in the Appendix. First we consider a symmetric RTS with barriers 50 A wide

and 200 meV high, and the well being 100 A wide. There are two quasi-bound

states in the well and several resonances above the barriers. In Figure 3 we

show three resonances having the same position and width in T(E) and in AN(E).

We note the different vertical scales for different resonance in AN(E). The

transmission always varies between zero and one (it reaches one for a

symmetric structure) while the peaks in AN(E) correspond to single bound

states, i.e., f AN(E)dE - 1 for each peak. Therefore broader peaks in N(E)

are much lower than the narrow ones. Away from the resonances AN(E) often

becomes negative -- the states are depleted from some regions and piled up in

other regions. Transmission, of course, is always positive.

Figure 4 shows T(E) and AN(E) for the same structure as in Fig. 3 but

for higher energies. Again we can see wiggles in transmission and distinct

resonances in AN(E). In Fig. 5 we give another example of the same behavior;

this time we consider an asymmetric structure with 50 A barriers and 50 A well

but the first barrier is 100 meV high while the second is 200 meV high.

Around 200 meV there is a peak in N(E) and only the inflection point in T(E).

Concluding, we have found a simple method for calculating the global

density of states (and its change AN(E)) in a resonant tunnelling structure.

We believe that AN(E) is a much better characteristics of resonant states than

transmission and it can be applied to more general cases (see Fig. 1). In

such cases our method should be modified - the unperturbed density of states

in k-space N0 (k) will not be uniform. For the structures in Fig. I the
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unperturbed structure would include a potential step. The spacing of the

levels would then be modified by the presence of RTS.
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Appendix: Energy levels in a box containing the RTS

Consider the double-barrier structure placed in a large box extending

from 0 to L. The first barrier extends from xI to x1 + aI with a height of V1

and the second from x2 - x1 + a1 + d to x2 + a2 with a height of V2. We

assume a constant effective mass across the structure. The boundary

conditions (continuity of the wavefunction and its first derivative) at four

interfaces (and at the edges of the box) yield the following condition for the

bound states:

D(k) -cosi. 2a2 [sinh(.Ia 1) -k sin(kx1 )sink(y+d))

+ cos(kxl)cos(k(y+d))1 + cosh(x a )sin(k(xl+y+d))]

+ sinh(x 2a2){sinh( lal) [sin(kd) k_2 sin(ky)sin(kx1 )
kk

k2 cos(ky)cos(kx1 ) + cos(kd)(J cos(ky)sin(kx1)
X I1 2 2

+ sin(ky)cos(kxl))] - cosh(xlak)[2 sin(ky)sin(k(l+d))

+ cos(ky)cos(k(xl+d))] - 0 , (Al)

2 2 22

where2 E, I, - -E, x2 - For a single
wee2m 2m 1 '2m 2 E,y -L a 2  x 2 '

barrier extending from xI to xI + b, we get a simpler expression,

Dk) - cosh(xb)sin(k(L-b)) + sinh(xb)(k cos(kx)cos(k(x +b-L))D~~k) co ~~~(IC)cs{k(lbL



- sin(kx )SnLk(x l+b'L)) " 0 (A2)
k 1l' 1

The above formulas are valid for E < V1 and E < V2. If the energy is above

any of the barriers, say E > V1 we make the replacement

KI -# ikI  , sinhilaI -. isinklal , coshl aI -. cosk a I  (A3)

The expression for D(k) is always real, i.e., the imaginary constants cancel.
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Figure Cavtions

1. Two examples of structures involving resonant states that could be studied

in terms of AN(E) but not in terms of transmission T(E): (a) strongly

biased, wide double-barrier structure and (b) single well with finite

width barrier on one side. The resonance is indicated by a shaded area.

2. Transmission T(E) and density of states AN(E) for a single barrier 100 meV

high and 50 A wide (a) or 100 A wide (b).

3. Transmission T(E) and density of states AN(E) in various energy regions

for a symmetric double-barrier structure. The barriers are 50 A wide and

200 meV high, and the well is 100 A wide.

4. Same as in Fig. 3 but for higher energies. Note the resonances in AN(E)

and wiggles in T(E).

5. Transmission T(E) and density of states AN(E) in the energy region above

the lower barrier for an asymmetric double-barrier structure. The

barriers and the well are each 50 A wide. The first barrier is 100 meV

high, and the second is 200 meV high. Note the peak is AN(E) at about 200

meV and the corresponding "blob" in T(E).
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